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Why Verified Computing?

• Computing speed produces unprecedented opportunities & risks.

• The existing floating-point paradigm can 

neither exploit all the opportunities,  nor avoid the risks.

- Fl-p numbers are logically disconnected from the real world;

- a single fl-p number contains no accuracy information.

Unvalidated computer results are used to make critical decisions.
The greater the dependence on comp.result;                      the greater

The more important their use; the risk! 

For disasters attributable to bad numerics see  

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

There must be a tight logical connection btw computing and reality!



How do we obtain verified results?
• 1958,  T. Sunaga – rigorous error estimation alternative to J.v.Neuman & H. Goldsteine’s

• 1966,  R. Moore -- commence systematic investigations

Interval Analysis as a Tool

brings continuum on the computer

represents  accuracy of the approximation

Properties:

Self-validating algorithms establish:

existence uniqueness     inclusion
of the problem solution within the computed bounds.



IA is an extension of fl-p arithmetic, not a replacement for it

The extended tool delivers a guaranteed answer faster than 

the restricted tool of fl-p arithmetic delivers an "approximation“:

numerical integration (because of automatic step size control);

global optimization (i-ls bring the continuum on the computer);

one int evaluation of a function over an interval may suffice to prove that the 
function definitely has no zero in this interval, while 1000 fl-p evaluations of 
the function in the i-l could not provide a safe answer;

systems of ODE and integral eqs deliver not just unproven numbers but
close bounds and prove existence and uniqueness of the solution within the 
computed bounds.

The bounds include both discretization and rounding errors.

This can save a lot of computing time by avoiding experimental reruns.



Validated computing uses controlled rounding of computer arithmetic 

to guarantee that hypotheses of suitable mathematical theorems

are (or are not) satisfied.

Mathematical rigor in 

• the computer arithmetic,

• in algorithm design, and  

• in program execution

allow us to guarantee that the stated problem has (or does not have) a 
solution in an enclosing interval we compute.

If the enclosure is narrow, we are certain that we know the answer reliably 
and accurately.

If wide, we have a clear warning that our uncertainty is large, and a closer 
study is demanded.



Interval Computations on the Computers

IEEE-Std. 754, 1984

While floating-point arithmetic is provided by fast hardware,

interval arithmetic has to be simulated by software.



XSC – Languages

• 1967-69, Uni.Karsruhe, ALGOL 60 extension;

• 1978, with Nixdorf, PASCAL-SC;

• 1983-89, with IBM,   ACRITH,  ACRITH-XSC; 

• 1988,  W. Walter,   FORTRAN-SC,  FORTRAN-XSC;

• 1990, U. Basel,    MODULA-SC;

• 1985-91, with NAG,  ADA;

• 1998, with ETHZ,   Oberon-XSC;

• 1990, PASCAL-XSC,  new runtime system; 

• 1992,  C-XSC;



language eXtensions for Scientific Computation

provide all features indispensable for modern numerical software development

• Operator concept (user-defined operators) 
• Overloading concept 
• Module concept 
• Dynamic arrays 
• Controlled rounding 
• Predefined arithmetic data types real, (extended real), complex, interval,

complex interval, and corresponding vector and matrix types 
• Predefined arithmetic operators of highest accuracy for the 

arithmetic data types 
• Predefined elementary functions of highest accuracy for

the arithmetic data types 
• Data type dotprecision for the exact representation of dot products 

Library of mathematical problem-solving routines with automatic result verification 
and high accuracy.



IA  libraries:

1978, S. Markov et all.,  HIFICOMP;

1992, B. Kearfott,   INTLIB for FORTRAN 77;  

1994, O.Knueppel,  PROFIL (BIAS)  in C++;

Hardware designs:

to overcome speed limitations of software tools

1990-- ,  Uni. Karlsruhe,  Dotproduct coprocessor

1995--,  Uni. Leicester,   Variale Precision IA coprocessor 



Sun Microsystems
Commersial compiler support of IA

2000,   Forte  Fortran 95

http://wwws.sun.com/software/sundev/previous/fortran/interval/

language extension  supporting  intrinsic INTERVAL data types

2001,  Forte C++

http://wwws.sun.com/software/sundev/previous/cplusplus/interval/

C++ interface to the C++ IA library

Platforms ranging from desktops to clustered enterprise-class servers



Sun’s goal is:

to stimulate development of commercial interval solver libraries 

& applications

by providing program developers with

• Quality interval code;

• Narrow-width interval results;

• Rapidly executing interval code;

• Easy-to-use software development environment.



The Forte Fortran 95 compiler 
contains the following interval features and extensions:

• Full support for extended interval data types 

• Valid results for any possible operator-operand combination
interval arithmetic operations and intrinsic mathematical functions form a closed system.

• Interval versions of all Fortran 95 intrinsic operators and functions that 
accept real arguments 

• A number of interval-specific intrinsic operators and functions, including: 
- interval-specific relational operators 
- set-theoretic intrinsic operators 
- mixed-mode expression evaluation 
- full input/output support



With the Forte Fortran 95 compiler, it is a simple matter to write interval 
programs to compute rigorous bounds on the value of arithmetic expressions: 

- Declare variables to be type INTERVAL. 

- Write normal Fortran code using the intrinsic INTERVAL functions, 
operators, relational operators, and format edit descriptors. 

- Compile code using the -xia command-line option. 



Interval Arithmetic support for C++ provides 
a C++ header file and 
library that implements three interval classes, 

one each for float, double, and long double.

The interval classes include:

• Interval arithmetic operations and mathematical functions that form 
a closed mathematical system. 

This means that valid results are produced for any possible operator-operand 
combination, including division by zero and other indeterminate forms 
involving zero and infinities.

• Three types of interval relational functions: 
Certainly, Possibly,   Set 

• Interval-specific functions, such as intersect and interval_hull 

• Interval-specific functions, such as inf, sup, and wid 

• Interval input/output, including single-number input/output 









Interactive Programming Environments

• Maple
*  intpack,   1993 (A. Connel, R. Corless)
*  intpackX,  1999 (I. Geulig, W. Krämer)
*  intpackX  v1.0   for Maple 6,   2001 (M. Grimmer)

integrates   intpack with intpackX
http://www.math.uni-wuppertal.de/wrswt/software

•Mathematica
* IA packages, 1990-1993 (J. Keiper)
* since ver. 2.2 the object Interval smoothly integrated into the kernel
* several additional packages developed in Sofia

• MATLAB
* INTLAB, 1998  (S. Rump)  -> best supported!

http://www.math.uni-wuppertal.de/wrswt/software


INTLAB for MATLAB
http://www.ti3.tu-harburg.de/rump/intlab/

toolbox for self-validating algorithms comprising:

IA for real and complex data including vectors and matrices 

IA for real and complex SPARSE matrices 

rigorous real interval & complex interval standard functions 

rigorous input/output

multiple precision IA with error bounds

automatic differentiation (forward mode, vectorized computations) 

automatic slopes 

toolbox univariate and multivariate (interval) polynomials

problem solving routines for systems of linear & nonlinear equations
eigenvalue problems,  and more. 

http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/


INTLAB features:

- everything is written in Matlab code -> portability
INTLAB tested under Windows with Matlab 5.3, 6.0 and 6.5.

- required  IEEE 754 arithmetic and  switching the rounding mode.
rounding is already integral part of Matlab 5.3, Windows
routines for switching the rounding mode are available for other platforms/OS

- infimum-supremum & midpoint-radius representations of intervals

- INTLAB extensively uses BLAS routines   =>  very fast matrix operations

- Midpoint-radius implementation takes full advantage of the speed of vector
& parallel architectures.

- INTLAB code is elegant, easy to read and to maintain;
powerful interactive tool to implement prototypes of verification algorithms.

Download INTLAB 4.1.1 source code for Unix and for Windows 
http://www.ti3.tu-harburg.de/rump/intlab/

Copyright (c) 1998 - 2003 Siegfried M. Rump @ TUHH, TI3



J. More: A Collection of Nonlinear Model Problems. 
In: Computational  Solution of Nonlinear Systems of Equations (Eds.: E.L. Allgower,  
K. Georg), Lectures in Applied Mathematics, Vol. 26, AMS (1990).

Fletcher describes a "distillation column test problem", 
and gives data for three processes.

For the third (the methanol-8 problem with 31 unknowns) he writes: 
"I still do not know if there exists a solution  to this problem."
The best he found was an approximation with 1e-2 residual norm.

All three problem where solved with verified bounds in 
G. Alefeld, A. Gienger and F. Potra: Efficient Numerical Validation 
of Solutions of Nonlinear Systems, SIAM J. Num. Anal. 31, 252-260 (1994). 



The call 
xs = fletcher('init1')         'init2'   or    'init3‘ generates the approximation

All three problem where solved with verified bounds. 
X = verifynlss('fletcher', xs) 

The number of the problem is choosen in fletcher.m according the dimension of xs. 

rel. error 
problem       unknowns median  maximum   time

===============================================
1  hydrocarbon-6      29     9.2e-14  3.6e-13        2.5 sec 
2 hydrocarbon-20      99     2.8e-12  8.4e-11         19 sec 
3  methanol-8 31     3.8e-14  2.7e-13        3.0 sec 

The computing time is measured on a  750 MHz Laptop. 



C++ Class Library   C-XSC

a tool for development of numerical algorithms delivering highly accurate 
& verified results

- 1990/91 Univ. Karlsruhe;  1992 Language Reference, Springer-Verlag

- 1994, CToolbox for Verified Computing in C-XSC

- June 1997,  XSC General Public License

- 1999/2000 redesign to conform to ISO/IEC C++ standard 14882-1998

Tested on:
PC with LINUX and GNU C++ compiler gcc 2.95.2/gcc 2.95.3/gcc 3.0.1/gcc 3.2 
SUN Solaris workstation with GNU C++ compiler gcc 2.95.2/gcc 2.95.3/gcc 3.2 
DEC alpha with LINUX with GNU C++ compiler gcc 2.95.2

supported in cooperation Karlsruhe/Wuppertal, GPL

http://www.math.uni-wuppertal.de/~xsc



The most important features of C-XSC are:

• Real, complex, interval, and complex interval arithmetic 
with mathematically defined properties 

• Dynamic vectors and matrices

• Subarrays of vectors and matrices

• Dotprecision data types 

• Predefined arithmetic operators with highest accuracy 

• Standard functions of high accuracy 

• Dynamic multiple-precision arithmetic and standard functions 

• Rounding control for I/O data 

• Error handling 

• Library of problem solving routines







CToolbox for Verified Computing in C-XSC

collection of routines for standard problems of numerical analysis producing guaranteed 
results of high accuracy

One-Dimensional Problems:

• Evaluation of Polynomials (Module rpoly, Module rpeval)

• Automatic Differentiation (Module ddf_ari) 

• Nonlinear Equations in One Variable (Module xi_ari, Module nlfzero)

• Global Optimization (Module lst1_ari, Module gop1)

• Evaluation of Arithmetic Expressions (Module expreval) 

• Zeros of Complex Polynomials (Module cpoly, Module cipoly, Module cpzero) 



CToolbox for Verified Computing in C-XSC

Multi-Dimensional Problems:

• Linear Systems of Equations (Module matinv, Module linsys) 

• Linear Optimization 
(Module set_ari, Module lop_ari, Module rev_simp, Module lop) 

• Automatic Differentiation for Gradients, Jacobians, and Hessians
(Module hess_ari, Module grad_ari) 

• Nonlinear Systems of Equations (Module nlinsys)

• Global Optimization (Module lst_ari, Module gop)



Further packages based on C-XSC

• Complex interval standard functions library (CoStLy)

• Automatic Computation of Estimates for Taylor Coefficients of 
Analytic Functions (ACETAF)

• One- and multidimensional (interval) slope arithmetic

• Classes for Verified Integration over Singularities (CLAVIS)

• Parametric interval linear systems

• Initial value problems in ordinary differential equations 

and more ...









Whenever you have to:

-compute the solution of a numerical problem rigorously verified 
to be correct,

- model/design with uncertain data

do not reinvent the wheel, 
but have a look at software already available!

http://www.cs.utep.edu/int-comp/

ask help writing to

reliable_computing@interval.louisiana.edu


