2.0 Definition and Goals

The Data: = “data generated from mathematical models or computations and from human and machine collection”

Goals of this chapter:

• relate data to reality (the world)
• discuss processing of data
• characterize data through data models
• give examples of (complex) data sets
2.1 Data and the world being modeled*

Establish valid and reliable relationship between Data and World

Scientific methods and concepts: Rationale

- Domain specialists try to find a model that matches the “real world”
- Computer Science students have little or no experience in scientific data acquisition or model to real world mapping
- Important for CS students to understand „mindset“ of domain specialists

* Chapter 2.1 from Tutorial by Scott Owen
2.1 Data and the world being modeled

Scientific Objectives and Method

• Objectives
 – Attempt to explain the real world (e.g. ball-and-stick)
 – Understanding
 – Prediction

• Method
 – Create a model of the world
 – Acquire data to verify or refine the model
2.1 Data and the world being modeled

Scientific Concepts

- What is a model?
- Relationship between model and empirical data
- Approximations in model
- Features of empirical data
- Mathematical models to represent reality
 - e.g. linear / non-linear / differential equations
2. The Data

2.1 Data and the world being modeled

Relationship between model and empirical data

- Model guides data acquisition and investigation
- Data may change parameters in model
- Data may cause model to be changed
- Data may be wrong (error in experiment)
2.1 Data and the world being modeled

Approximation in Scientific Modeling

- Rigorously derive a model
- Make approximations until computationally tractable
- Make more realistic approximations when have:
 - Faster machines
 - Better algorithms
2. The Data

2.1 Data and the world being modeled

Examples of Changing Approximations

- Computer Graphics
 - Ambient light (Phong model)
 - Radiosity
- Quantum Mechanics (Molecular Orbital Calculations)
 - Huckel
 - Semi-Empirical
 - Ab Initio
2.2 Processing the Data

Enhance information content of data
Example: Features of empirical data

• „Real world is a fuzzy place“*
• Data usually has noise (random errors)
 – Data may be smoothed
• Data is point sampled from an analog domain
 – Potential aliasing artifacts
• normalizing
 – make data comparable
• data cleansing
 – remove undesirable influences
• filtering: “Goal is to massage the data and not mutilate it”*

* useful comment by Scott Owen
2.3 Data Models

data model = conceptual view of data
Characterize data by e.g.
– geometry
– topology
– value
2.3.1 Advantage of Data Models

- discipline independent view on data
- choose expressive visualization technique
- avoid “mental road blocks”

[BRO92], [GAL94]
2.3.2 Overview of selected data characteristics

(Non-orthogonal characteristics)

• nominal, ordinal, quantitative
• point, scalar, vector
• “continuous” data
• topology/structure for non-continuous data
• data reliability
• valid range of data
• time descriptors
2.3.3 Nominal, ordinal, quantitative

- Nominal data - members of certain class, e.g. [Georgia, Florida, North Carolina, Delaware], or [Maple, Birch, Oak]
 - effective visual attributes: color (hue!), symbol

- Ordinal data - related by order, e.g. [low, medium, high], or [tiny, small, medium, large]
 - effective visual attributes: brightness, size, (color – hue, if meaningful to observer)

- Quantitative data - carry precise numerical value, e.g. [2.3, 4.56, 0.8, 2.5E-35]
 - effective visual attributes: position, length
2.3.3 Nominal, ordinal, quantitative

Priorities of Visual Attribute for Various Data Types (Excerpt) [MAC96]

<table>
<thead>
<tr>
<th>Quantitative</th>
<th>Ordinal</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density</td>
<td>Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Saturation</td>
<td>Density</td>
</tr>
<tr>
<td>Slope</td>
<td>Hue</td>
<td>Saturation</td>
</tr>
<tr>
<td>Area</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Density</td>
<td>Angle</td>
<td>Length</td>
</tr>
<tr>
<td>Saturation</td>
<td>Slope</td>
<td>Angle</td>
</tr>
<tr>
<td>Hue</td>
<td>Area</td>
<td>Slope</td>
</tr>
<tr>
<td>Shape</td>
<td>Area</td>
<td>Area</td>
</tr>
</tbody>
</table>
2.3.4 Point, Scalar, Vector

Syntactical categories, additionally characterized by dimensions

- **Point**
 - each data element is considered a position in n-dimensional space.
 - example: measurements of leaves: [length, width, tree type, age], e.g. [2.3, 1.2, B, 1], [4.3, 2.2, B, 3], [1.5, 1.5, M, 1], [3.0, 2.9, M, 3],
 - expressive visualizations: scatter plots, glyphs

- **Scalars**
 - each data element has a numeric expression
 - example: topography of terrain, expressed as 2-d field containing elevations

- **Scalar arrays** - often “discrete samples of continuous functions”
 - usually 1 (linear), 2 (image), or 3 (volumetric) dimensional data sets; samples in equidistant or non-equidistant steps.
 - expressive visualizations: line graph, shaded surface, volume viewing
2.3.4 Point, Scalar, Vector

• Vectors
 – each data element is considered a straight directed line with a certain length (magnitude) in n-dimensional space.
 – example: Direction of particle flow in channel
 – expressive visualizations: arrows, stream lines, particle tracks
2.3.5 “Continuous” Data

“Continuous” data can be represented by (samples of) function:
\[y_i = f_i(X), \text{ where } X = (x_1, x_2, x_3, \ldots, x_n); \ i=[1,\ldots,m] \]
\[x \ldots \text{ independent variables; e.g space, time, spectral (“dimensions”)} \]
\[y \ldots \text{ dependent variables (“parameters”)} \]

comes in regular and irregular formats

Expressive visualizations of functions: similar to scalar, quantitative, ordinal
Interpolation methods: must be meaningful in problem space
Computation time for visualization techniques faster on regular grids
2.3.6 Topology/structure of non-continuous data

- Types of topology/structure, e.g.
 - sequential (text)
 - hierarchical
 - relational
 - single points and connectors
- Examples and corresponding expressive visualizations
 - molecules (e.g. ball-and-stick model)
 - data bases (cone tree; perspective wall)
2.3.7 Other data characteristics in a data model

- Data reliability
 - Missing data or unreliable data
 - expressive visualizations: error bars; indicate borders between real/missing data
 - careful with interpolation
- Valid range of data
 - min / max / mean / median
- Time descriptors
 - Various meanings of time: simulation time, simulated/actual time frame, computation time, recording and playback time, user's time frame
 - “time models” to support time conversions necessary to synchronize
2.4 Examples

Complex data sets and their visual counterparts, e.g.

- scientific visualization
- proteins
- software
- web pages

Perspective Wall and Cone Tree: from CACM April 1993, Information Visualizer by Robertson, Stuart and Mackinlay.