3. The User and The Task

3.0 Goals and Introduction

Goals of this chapter:

• Increase awareness of the importance to know abilities, disabilities and goals of user
• show methods by which such knowledge can be applied in the visualization process
• evaluate success
3.1 What we need to know

- What characteristics **enable** / **disable** the user to interpret a picture in a **correct** / **desired** way?
 - we need to know about human visual perception
 - we distinguish between general / individual characteristics

- How can a developer / visualizer **make sure** that an image is correctly interpreted?
 - take stock of abilities, characteristics
 - test / evaluate
3. The User and The Task

3.1.1 What characteristics enable / disable the user?

1) How does human visual perception work? Explain by:
 - biological / psychophysical / cognitive facts
 - perception theories

2) Distinguish between general and individual characteristics, e.g.
 - „color blindness“ (individual) vs. Illusions (general) or insensitivity to short wavelengths (general)
3.1.2 How can a developer / visualizer make sure that an image is correctly interpreted?

1) Take stock of

- abilities, disabilites
- visualization aims, desires, habits
- education, culture

2) Test / evaluate

- „special tasks“
- „thinking aloud“
- statistical analysis
3.2 Human Visual System

It is important to know about

- Biological, psychological, and cognitive aspects of the visual system
- Visual perception and computer-generated images
- Theories of visual perception
- Human memory system
- Visual context – how it aids in the interpretation of images
3.2.1 Human Visual System – General Background

- biological issues
 - eye, neurons
 - effective sensory stimuli
- psychophysical issues
 - e.g. hue, saturation, brightness
- visual phenomena
 - e.g. simultaneous contrast,
 Machband effect [SEK85]
3. The User and The Task

Individual abilities – color blindness

Figure 2: (upper row) Arrangements of color chips at start of color perception test. (lower row) Correct result after rearranging chips.
Individual abilities – Fine motor skills

Figure 7: Fine motor coordination test. User traces green path from white rectangle to black rectangle. Errors (leaving green path) are counted and speed is measured.

[DOM94]
Individual abilities – ranking of color

Figure 4: Color gamut for color ranking test. [DOM94]
Human Visual System – color memory

Figure 5: Color Memory game. Nine color cards are uncovered for ten seconds at the beginning of the game.

[DOM94]
3.2.2 Theories of visual perception

- Gestalt laws
 - E.g. similarity, closeness, continuation
- Integration of images across time
3.2.3 Human memory system [SHN97]

- Short-term memory capacity
 - “The magical number seven - plus or minus two” (G. Miller, 1956)
 - recognize seven “chunks” of information
 - hold for 15 to 30 seconds
 - forget or move to long-term memory

- Short-term memory in conjunction with working memory
 - short term memory: process perceptual input
 - working memory: generate and implement solutions
 - disruptions, anxiety cause loss of information
3.2.4 Contribution of senses other than vision

- e.g. sound, force-feedback, smelling, etc.
3.3 Visual Perception and Computer-Generated Images

Visualizations / Pictures
• Entirety of graphical objects and their visual attributes as result of visualization process

Visual attributes
• Mode („flavor“) of presentation chosen, e.g. color, size, orientation
• Clever choice of visual attributes is paramount to visualization process
• Redundancy of visual attributes enhances interpretability

[BER67], [TUF83], [KEL93]
3.3.1 Interpretation of visual attributes

• Innate reaction to visual attributes
 – natural to interpret, usually simple
 – example: increasing brightness gives impression of increasing numerical values
 – preconscious/preattentive interpretation

• Acquired reaction to visual attributes
 – acquired through education, usually more complex
 – example: color ranking, street/travel signs, isolines, isosurfaces

• Illusory visual attributes
 – well documented illusions (not nec. well understood)
 – example: illusory triangle, color contrast, Machband effect, etc.
3.3.2 Visual attributes discussed in depth

Color

- psychophysical process
 - physics: relates to wavelengths, spectral distribution and amount of light entering eye
 - psychology: perceived sensation with no linear relation to physics
- no complete theory (three types of cones: S,M,L; opponent theory)
- variety of color spaces: geometric descriptions of color gamut
- perceptual dimensions of color: hue, saturation, intensity
 - may be varied independently or in connection to each other
 - hue: “colors” of rainbow (relates to wavelength)
 - saturation: “paleness” of color is lack of saturation (relates to spectral distribution)
 - intensity: light/dark colors (relates to amount of light entering eye) - brightness
Hue

- effective use for nominal data types and ordinal data types (color scale!)
- hints
 - small blue objects: disadvantage for short-wavelengths cones
 - blue (cool colors): farther away, cooler, lower or negative values
 - red (warm colors): nearer, warmer, higher and positive values; danger
 - shape of object displayed with rainbow scale may not be readily apparent
 - hues may change appearance on different backgrounds
 - “color-blindness”
 - ranking of hues not inherent
 - discontinuous color scales
Saturation

- effective use of saturation for ordinal data types
- careful when interpreting saturation and brightness independently
- 2-dimensional color scales for effectiveness
Brightness

- effective use of brightness for ordinal (and quantitative) data types
- hints
 - bright objects on dark background look bigger than dark objects on bright background
 - fading brightness gives impression of distance/depth
 - absolute brightness not perceived linearly
 - change of brightness not perceived linearly (Machband)
 - brightness contrast influences perception of brightness
- 2-dimensional color scales for effectiveness
Example IHS + RGB
Example: Color Tables

Figure 5: Kink instability in a supersonic jet: (a) linear map; (b) nonlinear map based on periodic functions. From Michael Norman, Department of Astronomy, University of Illinois at Urbana-Champaign.
Texture

- effective use for nominal data types
- hints
 - careful with overlapping textures
 - textures may give rise to other impressions, e.g. density
- include legend
Orientation

• hints
 – familiarity of shape often connected to orientation
 – symmetry around vertical axis preferred
• use various orientations to assure correct view of objects
Depth Attributes

- Use depth attributes to enhance the perception of 3-d structures
 - **fading brightness** to show increasing depth
 - **perspective geometry** to show increasing depth
 - **occlusion** to distinguish back/front
 - **transparency/translucency** to distinguish back/front
 - change of brightness (**shading**) to simulate surfaces
 - **rotation”/”rocking”** to enhance 3-d perception
 - **stereo effect**: anaglyph, shutter glasses, VR
- Example: complex molecules
Motion

- Frame update rate to perceive motion
 - at least 10 frames/sec [BRY94]
- Examples
 - animation
 - flicker two or more images to depict differences, similarities
3.3.3 Visual context / Necessary aids for the interpretation

- Adhere to the conventional meaning of colors
- Annotations aid the interpretation of visual attributes
- Examples of annotations
 - in textual form: labels, titles, legends
 - color/brightness scales
 - distance scales (scale bars) to relate world and screen coordinates
 - orientation signs, e.g. North arrow
 - animation annotation: time/spectral indicator
3.4 Visualization Goals / Visualization Tasks / Interpretation Aims

• focus of a user on a particular domain of interest during interpretation of image
• application dependent visualization goals
• application independent classification of visualization goals
3.4.1 Examples of Visualization Goals

- **Scientific visualization**, e.g.
 - identify objects, compare values, distinguish objects, categorize objects
- **Software visualization**, e.g.
 - focus on text/ or data structures/ or performance/ or algorithm
- **Information visualization**, e.g.
 - focus on detail with overall view, view relations
3.4.2 Task analysis [SHN97]

- determine task before determining representations
- tasks often determined informally or implicitly
- high-level tasks / middle-level tasks / atomic actions
- advantage: one representation can serve one high-level task
3.4 Evaluation of progress

- establish a goal that can be assessed
- start evaluation at early stages
 - change is still easy
- determine progress towards that goal
 - choose appropriate procedure, e.g. thinking aloud
3. The User and The Task

3.5 User addon

User

- What characteristics enable / disable the user to interpret a picture in a correct / desired way?
 - general / individual characteristics
 - how does visual perception work?

- How can a developer / visualizer make sure that an image is correctly interpreted?
 - take stock of abilities, characteristics
 - test / evaluate
What characteristics **enable** / **disable** the user?

1) **General / individual characteristics**, e.g.
 - „color blindness“
 - fine motor skills
 - mental rotation
 - color memory
 - ranking of color
 - illusions
 - insensitivity to short wavelenghts

2) **How does visual perception work?** Explain by:
 - Perception theories
 - biological / psychophysical / cognitive facts
How can a developer / visualizer make sure that an image is correctly interpreted?

1) Take stock of
 - abilities, disabilities
 - visualization aims, desires, habits
 - education, culture

2) Test / evaluate
 - „special tasks“
 - „thinking aloud“
 - statistical analysis